42-Trapping Rain Water
100-Same Tree | Links:
题意
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it can trap after raining.
Example 1:
Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6
Explanation: The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
Example 2:
Input: height = [4,2,0,3,2,5]
Output: 9
思路
- 栈:极值迭代
class Solution(object):
def trap(self, height):
"""
:type height: List[int]
:rtype: int
"""
# 每个位置积水的高度: min(左边最高的柱子高度,右边最高的柱子高度) - 当前位置的柱子高度
# 栈:极值迭代思路,栈里面保存当前最大值
left_max = [0 for _ in height]
right_max = [0 for _ in height]
water = [0 for _ in height]
# 更新左边最高柱子
for i in range(len(height)):
if i>=1:
left_max[i] = max(left_max[i-1], height[i])
else:
left_max[i] = height[i]
# 更新右边最高柱子
for i in range(len(height)-1, -1, -1):
if i < len(height)-1:
right_max[i] = max(right_max[i+1], height[i])
else:
right_max[i] = height[i]
# 更新当前水位
for i in range(len(height)):
temp = min(left_max[i], right_max[i]) - height[i]
if temp >0: water[i] = temp
return sum(water)
分析:
- Time: O(n)
- Space: O(n)